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SUMMARY 

We present the results of some numerical experiments which were carried out in order to investigate the 
general characteristics of the algorithm described in Part 1 of this paper. 
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1. INTRODUCTION 

Part 1 of this paper 1 presented a decoupled finite element algorithm which the authors have 
developed for the simulation of steady two-dimensional viscoelastic flow. The algorithm in- 
corporates non-consistent streamline upwinding and element subdivision for the stress field 
approximation. Results were given for two particular flow problems. 

Before the results given in Part 1 were obtained, a series of numerical experiments were carried 
out in order to establish some general features of the behaviour of the decoupled algorithm. The 
version of the algorithm used for these experiments did not incorporate the element subdivision 
feature. Subsequent experience indicated that the properties demonstrated by these experiments 
remain valid when element subdivision is used. 

The issues addressed in this paper are as follows. 

Manner of convergence and choice of convergence criterion. Convergence becomes more 
difficult as the Deborah number (De)  is increased. In the range of values of De for which 
convergence occurs, exactly how does the error norm (defined below) vary? How is its 
manner of variation affected as De approaches the convergence limit? How do we decide 
when a solution can be considered to have 'converged'? 
Loss of positive definiteness of the matrix T, (defined in Part 1). This accompanies loss of 
stability of the iterative scheme. 
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(c) Effect of mesh refinement on ease of convergence for a simple flow geometry (planar 
parallel-sided half-channel). 

2. FLOW PROBLEMS AND FINITE ELEMENT MESHES USED 

Two flow problems were used for the numerical experiments: the straight planar parallel-sided 
half-channel and the abrupt planar 4: 1 contraction. In each case the iterations begin from the 
Newtonian Aow field, which is given as input data. The computations were performed with UCM 
model except where stated otherwise. 

Figure 1 shows the meshes used for the straight half-channel problem. One side of the channel 
is an axis of symmetry and the other is a non-slip wall. The boundary conditions used for this 
and the 4: 1 contraction are as discussed in Part 1. The first mesh in Figure 1 has four subdivisions 
across the width and five along its length and so is designated 4 x 5. The others are 4 x 10, 
4 x 20, 8 x 10 and 12 x 10 respectively. 

Figure 2 shows the mesh used for the 4:l  contraction problem. It has 144 elements. 

3. DEFINITION OF THE ERROR NORM 

The stress error norm in the nth iteration is given by 

A T  E =- 
IT("' 

Figure 1. Straight channel 

Figure 2. 4: 1 contraction 
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where 
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AT" = c C( T:xl - T",;ll)z +( TLr - Ti1 l2 + ( qyl - qy, 1)21, 

I TI" = c C( K,,Y + ( T:J2 + ( T;,,Y 1, 
I 

1 

in which T:,, is the value of T,, at node I in the nth iteration, etc. 

4. RESULTS 

Manner of convergence; convergence criterion 

In Figures 3 and 4 various examples are shown of the way in which the error norm varies as the 
iterations proceed. The results in Figure 3 were obtained with the 4 x 5 mesh, while Figure 4 is for 
the 8 x 10 mesh. In both cases upwinding was used with the upwinding scale factor 4 equal to 
unity (i.e. so-called full upwinding). The general features seen in these results were also seen in the 
results obtained with the other straight channel meshes and with the 4:l contraction. For 
sufficiently low values of De, as the iterations proceed, the error norm falls more or less 
monotonically to very small values. For sufficiently high values of De the error norm begins to 
increase after the first few iterations and the solution diverges. 

In between these two extremes is a 'transition region' in which the solution cannot be said with 
any certainty to be either convergent or divergent. In some cases the error norm reaches a 
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Figure 3. Stress error norm against iteration number for the straight channel 4 x 5 mesh with 4 = 1 
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Figure 4. Stress error norm against iteration number for the straight channel 8 x 10 mesh with b= 1 

minimum value, which can be very small, but thereafter increases so that the solution ultimately 
diverges. 

The implication of these results is that as long as the maximum number of iterations allowed is 
restricted to a feasible value (within the limitations imposed by the available computing power), 
then the transition from convergence to divergence of the solution is not sharply defined. In 
practice it is necessary to choose a definite criterion to decide whether or not the solution is 
convergent-otherwise the computations would become impossibly expensive. The criterion 
which was used for the computations described in Part 1 was that the solution was considered to 
have converged if the error norm fell below a certain critical value within 100 iterations. The size 
of the critical value is a matter for compromise. The value we used was the results of the 
numerical experiments suggest that a larger value would not discriminate accurately enough 
between convergence and divergence, while a smaller value would have made the computations 
too expensive and time-consuming. 

Loss ofpositive definiteness of the matrix T,. 

The matrix TA was defined in Part 1 as T, = T + (1  - r)I/De, where T is the Maxwell extra stress, 
r is the viscosity ratio and I is the unit matrix. Loss of convergence of the iterative scheme is 
associated with loss of positive definiteness of TA. Tables I and I1 illustrate the sort of behaviour 
which is observed when the solution is divergent. The number of mesh points at which TA fails to 
be positive definite is denoted by N .  
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Table I. Straight half-channel (UCM); 12 x 10 mesh, 
4=1, De=33 

Iteration Error N 

40 2.2 x 10-2 0 
41 3.3 x 10-2 1 
42 3.9 x 10-2 4 
43 9-0 x lop2 3 
44 0.26 5 
45 0.6 6 
46 1 5 67 

Table 11. 4: 1 contraction (Oldroyd-B); 144-element 
mesh, q5 = 1, De = 0.5 

Iteration Error N 

2.3 x 
1.6 x 
3.2 x lo-’ 
6.1 x lo-’ 
9.1 x lo-’ 
0.23 
0.66 
3.7 

2 
2 
3 
2 
3 
4 
8 

19 

We can see that in these divergent cases the breakdown of the iterative scheme is associated 
with very rapid increases in N .  Such behaviour was observed in all divergent cases. In cases for 
which the solution converges, N is always zero, except for cases close to the convergence limit 
when it may be one or two. 

In the 4: 1 contraction case the nodes at which T, loses positive definiteness are generally in the 
vicinity of the re-entrant corner. As long as N is only two or three, these nodes are always very 
close to the corner and may include the node at the corner. As N increases, positive definiteness is 
lost at nodes lying farther from the corner, particularly on the downstream side of it. 

ESfect of mesh refinement in straight channel problem 

Table I11 shows convergence limits for the different meshes used in the straight channel 
problem. Upwinding (4 = 1) was used in each case. The minimum value of the stress error norm in 
each case is also stated. The values of the De limits are accurate to f0.25. 

Table 111. Straight channel 

4 x 5  4 x  10 4 x 2 0  8 x 1 0  12 x 10 

De limit 6.0 2.0 1.0 3-0 3.0 
Min. error 2.2 x 10-6 i . o X  10-9 2.0x 10-17 7.0 x 10-9 7 . 0 ~  lo-’’ 
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Comparing the results for the 4 x 10, 8 x 10 and 12 x 10 meshes shows that refinement across 
the channel makes convergence easier. Comparing the results for the 4 x 5, 4 x 10 and 4 x 20 
meshes shows that refinement along the channel length makes convergence more difficult. 

For more complex flow geometries such as those studied in Part 1, the results have shown that 
in general mesh refinement makes convergence more difficult. It was also noted in Part 1 that 
improved mesh design for a given number of elements could make convergence easier. 

For complex flow geometries other authors have also reported that mesh refinement makes 
convergence more difficult; examples are given in References 2 and 3. 
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